Some Lower Bounds for Estrada Index
نویسندگان
چکیده مقاله:
این مقاله چکیده ندارد
منابع مشابه
Lower Bounds for Estrada Index
If G is an (n,m)-graph whose spectrum consists of the numbers λ1, λ2, . . . , λn, then its Estrada index is EE(G) = ∑n i=1 e λi . We establish lower bounds for EE(G) in terms of n and m. Introduction In this paper we are concerned with simple graphs, that have no loops and no multiple or directed edges. Let G be such a graph, and let n and m be the number of its vertices and edges. Then we say ...
متن کاملNew Lower Bounds for Estrada Index
Let G be an n-vertex graph. If λ1, λ2, . . . , λn are the adjacency eigenvalues of G, then the Estrada index and the energy of G are defined as EE(G) = ∑n i=1 e λi and E(G) = ∑n i=1 |λi|, respectively. Some new lower bounds for EE(G) are obtained in terms of E(G). We also prove that if G has m edges and t triangles, then EE(G) ≥ √ n2 + 2mn+ 2nt. The new lower bounds improve previous lower bound...
متن کاملEla Lower Bounds for the Estrada Index of Graphs
The Estrada index was used to study the folding degree of proteins and other long-chain molecules [4, 5, 6, 9]. It also has numerous applications in the vast field of complex networks [7, 8, 13, 14, 17]. A number of properties especially lower and upper bounds [3, 10, 11, 12, 15, 16, 18, 19, 20] for the Estrada index are known. In this paper, we establish further lower bounds improving some res...
متن کاملBounds of distance Estrada index of graphs
Let λ1, λ2, · · · , λn be the eigenvalues of the distance matrix of a connected graph G. The distance Estrada index of G is defined as DEE(G) = ∑ n i=1 ei . In this note, we present new lower and upper bounds for DEE(G). In addition, a Nordhaus-Gaddum type inequality for DEE(G) is given. MSC 2010: 05C12, 15A42.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 1 شماره Issue 2 (Special Issue Dedicated to the Pioneering Role of Ivan Gutman In Mathematical Chemistry)
صفحات 67- 72
تاریخ انتشار 2010-04-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023